Questions are for separate science students only

Q1.

Figure 1 shows some apparatus used by a teacher in a demonstration. (HT only) (Physics only)

Magnet

Wire held between magnets

Magnet

Ammeter

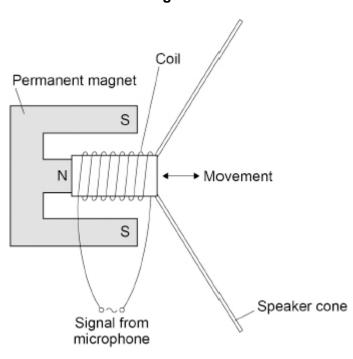
0
1.0

The teacher moved the wire upwards between the magnets.

The needle on the ammeter deflected to a value of +0.4 mA and then returned to zero.

Explain upwards	why a current was detected when the wir	e in Figure 1 was moved

(c)	The teacher reversed the direction of the magnetic field.			
	The teacher replaced the wire in its original position.			
	The teacher moved the wire upwards in the same way as before.			
	What was the deflection of the needle on the ammeter?			
	Tick (✓) one box.			
	The needle will deflect to -0.4 mA.			
	The needle will not move.			
	The needle will deflect to +0.4 mA.			
		(1)		
(d)	Figure 2 shows a sound wave incident on the diaphragm of a moving-coil microphone.			
	The inside of the microphone includes a small coil of wire and a magnet.			
	Figure 2			
	Sound wave To electric circuit Diaphragm Cylindrical magnet			
	Explain why the sound waves have an effect on the electric circuit.			


(3)

(Total 8 marks)

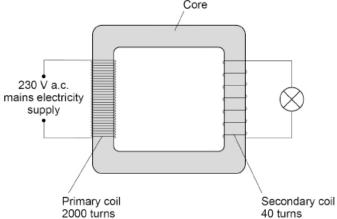
Q2.

Figure 3 shows the parts of the loudspeaker in the megaphone. (HT only) (Physics only)

Figure 3

A current in the coil of the loudspeaker causes the coil to move.

(a)	When the current in the coil is 16 mA, the force on the coil is 0.013 N.
	The length of the wire that makes up the coil is 6.5 m.


Use the Physics Equations Sheet.	Calculate the magnetic flux density around the coil in the electromagnet.
	Use the Physics Equations Sheet.

Magnetic flux density = ______

(4)

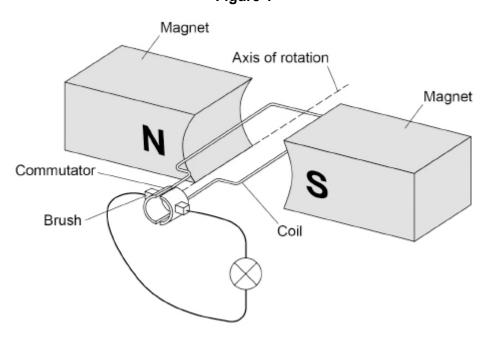
Q3.

The figure below shows a transformer used to power a lamp using the mains electricity supply. (HT only) (Physics only)

What materi	2000 turns ial is used to make the cor	40 turns
	ason for using this material	
	-	
Reason		
transformer		y coil when the power output of the
transformer The transfor	is 6.9 W.	y coil when the power output of the
transformer The transfor	ris 6.9 W.	y coil when the power output of the
transformer The transfor	ris 6.9 W.	y coil when the power output of the
transformer The transfor	ris 6.9 W.	y coil when the power output of the
transformer The transfor	ris 6.9 W.	y coil when the power output of the
transformer The transfor	ris 6.9 W.	y coil when the power output of the

Current in the secondary coil = _______

(5)


(Total 7 marks)

Q4.

A dynamo is used to generate an electric current.

Figure 1 shows the inside parts of the dynamo connected to a lamp. **(HT only) (Physics only)**

Figure 1

(a) The coil is rotated.

Explain why a direct current is induced in the coil.

(c)

(b) Sketch a graph on **Figure 2** to show how the potential difference generated across the lamp varies for **two** complete revolutions of the dynamo coil.

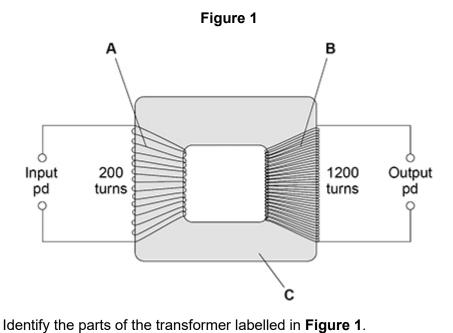
Figure 2

The lamp is disconnected from the dynamo.

Explain why the dynamo becomes much easier to turn.

(3)

(1)


(Total 9 marks)

Q5.

(a)

The National Grid uses transformers to change potential difference (pd).

Figure 1 shows a transformer. (HT only) (Physics only)

Α			
В			
С			

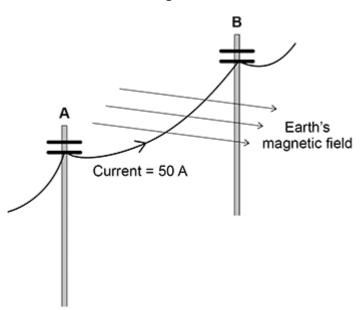
(b) There is an alternating input pd of 230 V.

Determine the output pd.

Use the Physics Equations Sheet.

Output pd = _____ V

(3)


(2)

(3)

(c)	The input pd causes an alternating current.			
	Explain why there is an alternating current in the output when the transformer is connected to a circuit.			

Figure 2 shows a large cable supported by two wooden poles. The cable is connected to an electricity supply.

Figure 2

(d)	There is a force on the cable due to the Earth's magnetic field when the current is in the direction A to B .	
	What is the direction of this force?	
	Tick (✓) one box.	
	Down	
	Left	
	Right	
	Up	(4)
(0)	The cable experiences a force of 0.045 N due to the Earth's magnetic field	(1)
(e)	The cable experiences a force of 0.045 N due to the Earth's magnetic field. magnetic flux density = $60 \mu T$	
	current = 50 A	
	Current – 50 A	
	Calculate the length of the cable between A and B .	
	Use the Physics Equations Sheet.	
		(4)
(f)	State one assumption you made in your calculation.	` ,
	(Total 14 ma	(1) arks)